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Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major
psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as
embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical
challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly
genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable
environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene
expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide
sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene
expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse
model (involving treatments with an anxiogenic drug—yohimbine, and an anti-anxiety drug—diazepam) as a discovery engine for
identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions
for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics
(CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of
cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1,
ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain–blood biomarkers (such as FOS, QKI and HSPA1B),
pathways (such as cAMP signaling) and mechanisms for anxiety disorders—notably signal transduction and reactivity to
environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar
mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the
genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant
genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with
schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed
clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as
a possible new nosological domain.
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Introduction

‘Worry is a thin stream of fear trickling through the mind. If
encouraged, it cuts a channel into which all other thoughts are
drained.’

–Arthur Somers Roche

Anxiety disorders are prevalent and disabling. Approxi-
mately 30 million people are affected with anxiety disorders in
United States1,2 and the 12-month prevalence rate is
estimated to be 18.1%.3 Anxiety disorders, under DSM
classification, include generalized anxiety disorder (GAD),
panic disorder, specific phobias, post-traumatic stress
disorder (PTSD) and obsessive-compulsive disorder (OCD).

They can be grouped into those without an obvious external
trigger (GAD, panic disorder), those with an obvious external
trigger (PTSD, phobias) and those that are more of a mixed
picture, like OCD. Anxiety disorders are often co-morbid with
other psychiatric disorders such as depression, bipolar disorder,
schizophrenia and substance abuse.4,5 Phenomenologicaly,
anxiety disorders seem to have in common an increased reactivity
to the environment, driven by uncertainty and fear of perceived
threats.6 Stress is a common trigger and/or exacerbator.

Despite their prevalence and clinical impact, anxiety
disorders are understudied from a genetic standpoint,
compared with other major psychiatric disorders. Twin,
adoption and familial studies have suggested a role for
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heritability in anxiety disorders.7,8 Human genetic linkage
studies have identified some susceptibility loci.9–11 Genetic
association studies have identified polymorphisms in genes such
as corticotropin-releasing hormone (CRH),12 glutamate trans-
porter (SLC1A1),13 adenosine A2a receptor (ADORA2A),14

regulator of G-protein signaling 2 (RGS2),15,16 delta-aminolevu-
linate dehydratase (ALAD),17 dynein light chain 2 (DYNLL2)17

and others as possibly involved in anxiety disorders, but with
limited reproducibility. There are few published human post-
mortem brain gene expression studies to date on anxiety and
related disorders.18,19

To overcome this suboptimal state of affairs, we employed a
comprehensive convergent functional genomics (CFG)20–23

approach as a way of identifying and prioritizing candidate
genes and blood biomarkers for anxiety disorders, as we did in
our previous work on bipolar disorder,24–28 schizophrenia29,30

and alcoholism.31 As a first step, we used drug effects on gene
expression in mice in key brain regions for anxiety (prefrontal
cortex (PFC), amygdala (AMY) and hippocampus (HIP)),32 as
well as blood (BLD), as a way to tag genes that may have
pathophysiological relevance. We then cross-matched and

integrated that gene-level data with multiple other lines of
evidence (genetic and gene expression) from human studies
and other animal model studies (Figure 1).

For our mouse brain and blood gene expression studies, we
used an agonist drug, which induces symptoms of anxiety
(yohimbine),33–35 and a gold standard antagonist drug, which
is used to treat anxiety disorders (diazepam)36,37 (Figure 1).
From the range of doses of the drugs that had been
reported in the literature to have our desired behavioral
effects, we chose doses at the low end of the range, to
minimize potential supraphysiological dosing artifacts and
side-effects. We also employed a behavioral readout to make
sure the drugs were absorbed and doing what they were
supposed to do (Figure 2).

Changes in gene expression in response to each of the two
drugs, yohimbine and diazepam, would be of interest in and of
themselves, in terms of candidate gene generation and CFG.
However, not all genes that show changes in expression in
response to either of the drugs are necessarily germane to the
pathophysiology of anxiety and related disorders. It is
likely that some of the gene expression changes have to do

Figure 1 Design of experiments and data analysis. (a) Pharmacological treatment paradigm. (b) Experimental design. (c) Venn diagram categorizing genes changed by
the various drug treatments, and their classification into categories I, II, III and IV. (d) Multiple converging independent internal and external lines of evidence for cross-
validation and prioritization of findings.
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with other effects of the drugs, particularly their individual
side-effects. We reasoned, first, that genes that change in
expression in response to both drugs are more likely to be
involved in the core pathophysiology we are modeling,
and are higher probability candidate genes. Second, co-
treatment with the two drugs, one an anxiogenic, and the other
one an anxiolytic, could arguably show interference
effects, and some of the genes that would be changed by
single drug treatment would be ‘nipped in the bud’ and
show no changes in expression in response to co-treatment.
Those genes would also be deemed higher probability
candidate genes than the genes that still change during
co-treatment.

As external cross-validators, for each gene changed in
expression in our pharmacogenomics studies, we used six
independent lines of evidence in our CFG analyses
(Figure 1d). First, we assessed if there was any published
genetic evidence—human genetic evidence of association
with anxiety, or at least if it mapped to a linkage locus that had
been implicated in anxiety disorders. We also looked at
mouse transgenic or quantitative trait loci (QTL) studies
relevant to anxiety. Second, we assessed if there was any
published gene expression evidence in brain or blood in
anxiety disorders, from human studies and, more broadly,
from other animal models of anxiety.38 These external lines of
evidence suffer from the obvious drawback of being con-
strained by what has been published so far, limiting novelty,
and to the inherent biases and limitations of those particular
lines of work.

According to Bayesian theory, an optimal estimate results
from combining previous information with new evidence.
Although we cannot exclude that some of the candidate genes
we have identified are false positives because of potential
biological or technical limitations of the methodology and
approach we employed, the higher the number of independent
lines of evidence (i.e. the higher the CFG score), the lower the
likelihood of that being the case. The CFG scoring is arguably
a reasonable compromise between specificity and sensitivity,
between focus and broadness.

Our approach identifies and prioritizes an extensive series
of candidate genes, some of which have already been
reported using various related treatments or paradigms, as
well as many others which are novel. Moreover, the
coalescence of the candidate genes into pathways and
mechanisms is of particular importance and opens new
directions. Finally, we compared our results with our previous
similar work in bipolar disorder,25,26 schizophrenia29 and
alcoholism,31 and were able to analyze the significant genetic
overlap between anxiety and these other disorders, providing
a molecular basis for the frequently observed clinical
co-morbidity.

Materials and methods

Yohimbine and diazepam treatments. All experiments
were performed with male C57/BL6 mice, 8–12 weeks of
age, obtained from Jackson Laboratories (Bar Harbor, ME,
USA), and acclimated for at least 2 weeks in our animal
facility (Indiana University School of Medicine LARC) on
reverse light cycle (1000 to 2200 hours) before any
experimental manipulation. All experiments were conducted
at the same time of day—between 1400 and 1600 hours.
Mice were treated by intraperitoneal injection with single-
dose of yohimbine (1 mg kg–1), diazepam (0.3 mg kg–1), a
combination of yohimbine and diazepam (1 and 0.3 mg kg–1),
or control (vehicle) solution only. The control solution,
which was also used to dissolve the drugs, consisted
of 0.325% Tween 80 in 0.9% phosphate-buffered
saline and alcohol (EtOH) at a final concentration of
10 ml ml–1 EtOH.

Behavioral studies. A SMART II Video Tracker system
(San Diego Instruments, San Diego, CA, USA) was used to
track movement of mice under normal light immediately after
drug administration. After injection, mice were placed in the
lower right-hand corner of one of four adjacent, 41_41_34-
cm3 enclosures. Mice had no physical contact with other
mice during testing. Each enclosure has nine pre-defined
areas, that is, center area, corner areas and wall areas.
After an initial 15 min of adaptation, measures of locomotor
activity were obtained from the second half (15 min) of the
total 30-min time recorded immediately after injection
of the drugs, with a focus on behavior in the open field
center area.

Gene expression studies. Three independent de novo
biological experiments, performed at different times, were
used for gene expression studies. Each experiment
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Figure 2 Behavioral correlates of diazepam and yohimbine treatment—time
immobile in center zone. Analysis of mouse open field video-tracking behavioral
phenotype data from 15 to 30 min after drug injections. Ratio of resting time in the
center zone vs total time spent in the center zone. This measure reflects freezing
behavior, an anxiety-driven phenomenon. Yohimbine increases freezing, diazepam
reduces it, and co-treatment does not have an effect. One-tail t-tests are depicted.
(*) Statistically significant. The difference between diazepam and yohimbine is
highly statistically significant (**).
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consisted of three mice per treatment condition, for a total of
nine mice per condition across the three experiments
(Figure 1b). Brain and blood from the same de novo
experiment were used for microarray studies.

Microdissection. Twenty-four hours after drug
administration, mice were sacrificed by cervical dislocation.
The brains of the mice were harvested, stereotactically
sliced and hand micro-dissected using Paxinos mouse
anatomical atlas coordinates, to isolate anatomical regions
of interest—PFC, AMY and HIP.25,27,29 Tissues were flash
frozen in liquid nitrogen and stored at �80 1C until future
processing for RNA extraction and gene expression
analyses. Approximately 1 ml of blood/mouse was collected
in PAXgene blood RNAcollection tubes (PreAnalytix, Qiagen,
San Jose, CA, USA). The PAXgene tubes were stored at
4 1C overnight, and then at �80 1C until future processing for
RNA extraction.

Microarrays. We used Mouse Genome 430 2.0 arrays
(Affymetrix, Santa Clara, CA, USA). The GeneChip Mouse
Genome 430 2.0 Array contain over 45 000 probe sets that
analyze the expression level of over 39 000 transcripts and
variants from over 34 000 well-characterized mouse genes.
Microarrays used in each independent experiment were
derived from the same manufacturing lot.

RNA extraction and hybridization. For each brain region
(PFC, AMY and HIP) and blood, equal amounts of total RNA
extracted from tissue samples were pooled within each
biological experiment (three mice per treatment group), and
then used for labeling and microarray assays.

Standard techniques were used to obtain total RNA (22
gauge syringe homogenization in RLT buffer) and to purify the
RNA (RNeasy mini kit, Qiagen) from micro-dissected mouse
brain regions. For the whole mouse blood RNA extraction,
PAXgene blood RNA extraction kit (PreAnalytiX, a Qiagen/BD
Biosciences, San Jose, CA, USA) was used, followed by
GLOBINclearTM–Mouse/Rat (Ambion/Applied Biosystems,
Austin, TX, USA) to remove the globin mRNA. All the methods
and procedures were carried out as per the manufacturer’s
instructions. The quality of the total RNA was confirmed using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). The quantity and quality of total RNA was also
independently assessed by 260 nm ultraviolet absorption and
by 260/280 ratios, respectively. Starting material of total
RNA labeling reactions was kept consistent within each
independent microarray experiment.

Standard Affymetrix protocols were used to reverse
transcribe the messenger RNA and generate biotinlylated
complementary RNA (http://www.affymetrix.com/support).
The amount of complementary RNA used to prepare the
hybridization cocktail was kept constant within each experi-
ment. Samples were hybridized at 45 1C for 17 h under
constant rotation. Arrays were washed and stained using the
Affymetrix Fluidics Station 400 and scanned using the
Affymetrix Model 3000 Scanner controlled by GCOS soft-
ware. All sample labeling, hybridization, staining and scanning
procedures were carried out as per the manufacturer’s
recommendations.

Quality control. All arrays were scaled to a target intensity of
1000 using Affymetrix MASv 5.0 array analysis software.
Quality control measures including 30/50 ratios for
glyceraldehyde 3-phosphate dehydrogenase and b-actin,
scaling factors, background and Q values were within
acceptable limits.

Microarray data analysis. Data analysis was performed
using Affymetrix Microarray Suite 5.0 software (MAS v5.0).
Default settings were used to define transcripts as present
(P), marginal (M) or absent (A). A comparison analysis was
performed for each drug treatment, using its corresponding
saline vehicle treatment as the baseline. ‘Signal’, ‘detection’,
‘signal log ratio’, ‘change’ and ‘change P-value,’ were
obtained from this analysis. An empirical P-value threshold
for change of Po0.00025 was used. Only transcripts that
were called present in at least one of the two samples (saline
vehicle or drug) intra-experiment, and that were reproducibly
changed in the same direction in at least two out of three
independent experiments, were analyzed further.

Gene identification. The identities of transcripts were
established using NetAFFX (Affymetrix). Probe-sets that
did not have a known gene were labeled ‘EST’ and their
accession numbers kept as identifiers.

CFG analyses
Databases. We have established in our laboratory (Laboratory
of Neurophenomics, Indiana University School of Medicine,
www.neurophenomics.info) manually curated databases of all
the human gene expression (postmortem brain, blood),
human genetic (association, linkage) and animal model
gene expression studies published to date on psychiatric
disorders.21 Only the findings deemed significant in the
primary publication, by the study investigators, using their
particular experimental design and thresholds, are included
in our databases. These constantly updated large databases
have been used in our CFG cross-validation (Figure 1).

Human genetic evidence (association, linkage). To
designate convergence for a particular gene, the gene had
to have published evidence of association or linkage for
anxiety disorders, including PTSD, OCD, panic disorder and
phobias. For linkage, the location of each gene was obtained
through GeneCards (http://www.genecards.org), and the sex
averaged cM location of the start of the gene was then
obtained through http://compgen.rutgers.edu/old/map-
interpolator/. For convergence, per our previously published
criteria,25 the start of the gene had to map within 10 cM of the
location of a marker linked to the disorder.

Human gene expression evidence (postmortem brain,
blood). Information about genes was obtained and
imported in our databases searching the primary literature
with PubMed (http://ncbi.nlm.nih.gov/PubMed), using various
combinations of keywords (gene name, anxiety, stress,
phobia, panic, PTSD, OCD, human, brain, postmortem,
blood, lymphocytes, fibroblasts). Convergence was deemed
to occur for a gene if there were published human
postmortem brain data (or, rarely, blood and other tissue
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data) showing changes in expression of that gene in tissue
from patients with anxiety and related disorders.

Mouse genetic evidence (transgenic, QTL). To search for
mouse genetic evidence—QTL or transgenic—for our
candidate genes, we utilized the MGI_3.54—Mouse
Genome Informatics (http://www.informatics.jax.org).
(Jackson Laboratory) and used the search ‘Genes and
Markers’ form to find QTL or transgenic for Mammalian
Phenotype Ontology category ‘abnormal emotion/affect
behavior’, which includes the following sub-categories:
abnormal fear/anxiety-related behavior, abnormal response
to novelty and aggression-related behavior. To designate
convergence for a particular gene, the gene had to map
within 10 cM of a QTL marker for the abnormal behavior, or
a transgenic mouse of the gene itself displayed that behavior.

Animal model brain and blood gene expression evidence. For
animal model brain and blood gene expression evidence, we
have used in addition to our own data, published reports from
the literature, curated in our databases.

CFG analysis scoring. Only genes reproducibly changed
in expression in the same mouse tissue (PFC, AMY, HIP
and blood), in the same direction, in two out of three
independent experiments, were analyzed further. The three
internal lines of evidence (pharmacological treatments—
changed in yohimbine, changed in diazepam, no change in
co-treatment) were scored with 1 point each. The six external
cross-validating lines of evidence (three animal models,
three human) were: animal model genetic data, animal model
brain gene expression data, animal model blood gene expres-
sion data, human genetic data, human brain gene expression
data and human blood gene expression data (Figure 1d).
The lines of evidence received a maximum of 1 point each
(for animal model genetic data, 0.5 points if it was QTL, 1 point if
it was transgenic; for human genetic data, 0.5 points if it was
linkage, 1 point if it was association). Thus the maximum
possible CFG score for each gene was 3þ 6¼ 9.

The more lines of evidence, that is, the more times a gene
shows up as a positive finding across independent studies,
platforms, methodologies and species, the higher its CFG
score (Figure 1d). This is very similar conceptually to a Google
PageRank algorithm, in which the more links to a page, the
higher it comes up on the search prioritization list.23 Human
and animal model, genetic and gene expression, data sets
were integrated and tabulated. It has not escaped our
attention that other ways of weighing the scores of line of
evidence may give slightly different results in terms of
prioritization, if not in terms of the list of genes per se.
Nevertheless, this simple scoring system, where the different

independent lines of evidence are weighted equally, and more
of the lines of evidence are related to gene expression rather
than genetics, arguably provides a good separation and
prioritization of genes and blood biomarkers that are changed
in expression and disease relevant, our stated focus.

Pathway analyses. Ingenuity 8.5 (Ingenuity Systems,
Redwood City, CA, USA) was used to analyze the
biological roles, including top canonical pathways, of the
candidate genes resulting from our work (Table 5,
Supplementary Table S2), as well as employed to identify
genes in our data sets that are the target of existing drugs
(Supplementary Table S4). GeneGo (Thompson Reuters)
was used to analyze the disease categories of the genes
identified (Table 7, Supplementary Table S3).

Results

Our pharmacogenomics animal model displays a behavioral
readout consistent with the drugs having an impact and their
intended effects—anxiogenic for yohimbine, anxiolytic for
diazepam and mitigation of effects for co-treatment (Figure 2).

We have a relatively large number of genes changed in
expression in the mouse tissues examined (three brain
regions and blood) (Table 1).

To start with, we have grouped the mouse model gene
expression changes into categories I–IV, as described in
Figure 1c and Table 1. We reasoned that genes that are
category I genes, which are changed in expression by both the
agonist and antagonist, as well as not changed (‘nipped in
the bud’) by co-treatment, are more likely to be involved in the
core biology of anxiety disorders rather than be pleiotropic
effects/side-effects of the drugs we used. Of note, the HIP and
the blood have a relatively greater proportion of category I
genes than the other brain regions (Table 1), suggesting an
important role in anxiety disorders for the HIP, and a possible
peripheral effect/biomarker readout for the blood.

For CFG scoring, each internal pharmacological line of
evidence (changed in expression by yohimbine, changed by
diazepam and not changed by co-treatment) was scored
separately, along with each of the six external lines of
evidence (three from animal model studies, and three from
human studies), resulting in a maximum possible CFG score
of 9 (Figure 1). Genes that have a CFG score of 4 or above,
i.e. they have at least one full external line of evidence in
addition to the maximal possible score of 3 from the internal
evidence, were prioritized and shown in Table 2 and Figure 3.
The average CFG score for the top candidate genes (Table 2)
was again highest for HIP (4.4), followed by AMY (4.37), PFC
(4.34) and blood (4.26). The relative role of HIP in anxiety

Table 1 Number of genes reproducibly changed in different regions, classified by categories I–IV

Category I
(% of total)

Category II Category III—
diazepam

Category III—
yohimbine

Category IV—
diazepam

Category IV—
yohimbine

Total

Prefrontal cortex 4 (3.9%) 3 29 32 15 19 102
Amygdala 4 (3.2%) 12 46 32 11 20 125
Hippocampus 32 (10.2%) 10 56 194 11 11 314
Blood 54 (11.0%) 41 246 100 36 16 492
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disorders may thus be more important than previously
appreciated, consistent with recent work in the field.32,39

Top candidate genes. Our analysis identified and
prioritized a number of top candidate genes (Figure 3 and
Table 2), some well-known for involvement in anxiety, some
less well known, such as FOS, GABBR1, NR4A2, DRD1,
ADORA2A, QKI, RGS2, PTGDS, DYNLL2 and CCKBR. FOS
(FBJ murine osteosarcoma viral oncogene homolog) is an
oncogene as well as an immediate early response gene. It is
a transcription factor involved in cellular reactivity to external
signals. In our studies, it is also a top brain–blood biomarker
for anxiety, concordantly changed in the AMY, HIP and
blood. Interestingly, there is previous evidence of increase in
expression of FOS in blood from PTSD patients.40 GABBR1
(gamma-aminobutyric acid (GABA) B receptor, 1) has a
critical role in the fine-tuning of inhibitory synaptic
transmission mediated by GABA. Our work provides
evidence for its involvement in the AMY in anxiety
(Table 2). Like FOS, it is also changed (decreased) in
expression in blood from PTSD patients.40 GABBR1 has
previous evidence suggestive for genetic association with
OCD41 and with schizophrenia.42 NR4A2 (nuclear receptor
subfamily 4, group A, member 2) is a steroid receptor family
member, as well as immediate early response gene. It is a
transcription factor involved in cellular reactivity to external
signals, with a role in dopaminergic neuron development.
Our work provides evidence for its involvement in the HIP in
anxiety (Table 2). NR4A2 has previous evidence suggestive
for genetic mutations43 and brain expression changes44 in
schizophrenia and bipolar disorder. DRD1 (dopamine
receptor 1), for which our work provides evidence for its
involvement in the PFC and HIP in anxiety (Table 2), has
previous evidence suggestive for genetic association in panic
disorder.45 ADORA2A (adenosine A2a receptor), is a

receptor for adenosine. The activity of this receptor is
mediated by G proteins which activate adenylyl cyclase.
Our work provides evidence for the involvement of
ADORA2A in the AMY in anxiety (Table 2). There is
previous evidence suggestive for genetic association in
panic disorder.46,47 Notably, with the exception of FOS, all
the above discussed top candidate genes for anxiety have
also been previously identified by our CFG work as being
among top candidate genes for schizophrenia29 (Table 6,
Supplementary Figure S1). QKI (quaking homolog, KH
domain RNA binding), a RNA-binding protein, has a central
role in myelination. In our studies, it is also a top brain–blood
biomarker for anxiety, concordantly changed in the AMY and
blood. Interestingly, there is previous evidence of increase in
expression of QKI in blood from humans subjected to chronic
stress.48 Finally, among our top candidate genes are RGS2,
DYNLL2, PTGDS and CCKBR, all of which have previous
human genetic association evidence for anxiety disorders
and thus serve as a de facto positive control for our
pharmacogenomic approach. Of note, PTGDS and CCKBR
are also top candidate genes for schizophrenia in our
previous work29 (Table 6, Supplementary Figure S1).

In addition, we have looked at what genes were changed in
expression in all three brain regions studied (Table 3), on the
premise they are more likely to be involved in the core biology
of anxiety. Notably, EGR2 (early growth response 2) and
SGK1 (serum/glucocorticoid-regulated kinase 1), which are
involved in cellular reactivity to external signals and stress,
have high CFG scores (i.e. multiple converging lines of
evidence) for involvement in anxiety disorders.

Biomarkers. Genes that are changed in expression in one
of the key brain regions studied and in blood are candidate
blood biomarkers.22 We used a narrow interpretation of what
can constitute a candidate blood biomarker (Table 4), i.e. the

Figure 3 Top candidate genes for anxiety.
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change in gene expression in brain and blood has to be co-
directional, inside the same drug treatment arm. FOS, QKI,
HSPA1B and DNAJB1 are the top candidate biomarkers
under this definition. There is more overlap between brain
and blood if co-directionality of expression is not a criterion
(Supplementary Table S1), as different tissues (and brain
regions) can show different directions of gene expression
changes. Moreover, there may be an even more significant
overlap between brain and blood at a biological pathway level
(Table 5 and Figure 4), where the same top pathways, if not

necessarily the same genes, show alterations. Notably the
glucocorticoid receptor signaling pathway and the CCR5
signaling pathway are altered in anxiety in both AMY and
blood. In the end, panels of biomarkers and pathways need
to be clinically validated, i.e. show predictive ability for
anxiety state or response to treatment in independent human
studies.

Pathways. First, we carried out biological pathway analyses
on all the genes that were changed in expression in our
pharmacogenomic model, without any CFG prioritization
(Supplementary Table S2). This may give a view of pathways
involved in anxiety in the brain, but probably includes other
pleiotropic effects of the drugs used.

Next, we carried out pathway analyses on the top candidate
genes prioritized by CFG (CFG score of 4.0 and above)
(Table 5). The resulting pathways are likely more specific to
the core illness phenomenology, and less pleiotropic. Among
these top biological pathways altered in anxiety, cAMP is
changed in common in all three brain regions studied
(Figure 4). cAMP signaling is fundamental to cellular reactivity
to external signals. Previous evidence has been suggestive of
a role for cAMP signaling pathways in anxiety disorders,49–51

but our work is the first to identify it as a core mechanism for
anxiety across different brain regions.

We also identified biological pathways involved in anxiety
specific to the different brain regions we studied. In the PFC,
after cAMP signaling, the top pathway is Huntington’s disease
signaling. This pathway is also a top pathway altered in the
blood in our analyses, suggesting its potential as a biomarker
repository (Figure 4). In the AMY, the top pathway is
aldosterone signaling. Previous work in animal models has
suggested a role for the mineralocorticoid pathway in anxiety
and stress response.52 Glucocorticoid receptor signaling and
CCR5 signaling are other top pathways in the AMY, as well as
in blood (Figure 4). In the HIP, after cAMP signaling, the
top pathway is corticotropin-releasing hormone signaling.
This pathway is well established in anxiety and stress

Table 5 Biological pathway analyses of top candidate genes

Top Canonical Pathways P-value Ratio

PFC (n¼16 genes)
cAMP-mediated signaling 1.33E�03 3/217 (0.014)
Huntington’s disease signaling 1.65E�03 3/246 (0.012)
Dopamine receptor signaling 3.69E�03 2/93 (0.022)
Glioma signaling 5.11E�03 2/116 (0.017)
PTEN signaling 5.6E�03 2/123 (0.016)

AMY (n¼ 19 genes)
Aldosterone signaling in epithelial cells 3.51E�05 4/172 (0.023)
Protein ubiquitination pathway 2.15E�04 4/274 (0.015)
cAMP-mediated signaling 1.85E�03 3/217 (0.014)
Glucocorticoid receptor signaling 3.21E�03 3/284 (0.011)
CCR5 signaling in macrophages 3.37E�03 2/95 (0.021)

HIP (n¼45 genes)
cAMP-mediated signaling 2.39E�04 5/217 (0.023)
Corticotropin releasing hormone signaling 2.89E�04 4/137 (0.029)
GNRH signaling 3.58E�04 4/145 (0.028)
G-protein coupled receptor signaling 3.83E�04 7/531 (0.013)
Antiproliferative role of somatostatin
receptor 2

1.08E�03 3/81 (0.037)

Blood (n¼41 genes)
Glucocorticoid receptor signaling 5.21E�04 5/284 (0.018)
CCR5 signaling in macrophages 9.33E�04 3/95 (0.032)
PPAR signaling 1.84E�03 3/106 (0.028)
Role of osteoblasts, osteoclasts and
chondrocytes in rheumatoid arthritis

2.67E�03 4/243 (0.016)

Huntington’s disease signaling 2.88E�03 4/246 (0.016)

Abbreviations: AMY, amygdala; CFG, convergent functional genomics; HIP,
hippocampus; PFC, prefrontal cortex.
Ingenuity Pathway Analyses of top candidate genes (CFG score of 4.0 and up).

PRE-FRONTAL CORTEX

AMYGDALA HIPPOCAMPUS

cAMP–mediated 
Signaling 

PFC and Blood
Huntington's Disease Signaling

AMY  and  Blood
Glucocorticoid Receptor Signaling
CCR5 Signaling in Macrophages

Huntington's Disease Signaling
Dopamine Receptor Signaling

Glioma Signaling
PTEN Signaling

Corticotropin Releasing Hormone Signaling
GNRH Signaling

G-Protein Coupled Receptor Signaling
Antiproliferative Role of Somatostatin Receptor 2

Aldosterone Signaling in Epithelial Cells
Protein Ubiquitination Pathway

Glucocorticoid Receptor Signaling
CCR5 Signaling in Macrophages  

Figure 4 Top biological pathways for anxiety in different brain regions. Overlap between brain regions, and with the blood.
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response,53,54 and serves as a reassuring positive control for
our own work and analyses.

Discussion

We have used a comprehensive, CFG approach for identify-
ing high probability candidate genes, pathways and mechan-
isms for anxiety and related disorder, by the integration in a
Bayesian fashion of multiple independent converging lines of
evidence. This mapping of the genomic landscape of anxiety
disorders completes our triad of first-pass mapping efforts of
major psychiatric disorders domains—bipolar disorder,25,26,55

schizophrenia,29 and now anxiety disorders.
Our convergent approach emphasizes gene expression

evidence more than genetic evidence, i.e. more of the scored
lines of evidence come from gene expression studies than
from genetic studies (Figure 1). Gene expression studies are
arguably a better way to understand biology than genetic
studies. After all, gene expression is the result of integration of
the effects of many genetic polymorphisms, epigenetic
changes and environmental effects, whereas genetics looks
too early in this chain of events, and in a narrow fashion.
Biologically important genes can thus be identified and
studied in action at a gene expression level, whereas at a
genetic level the complexity and heterogeneity of genetic
polymorphisms precludes easy identification and gives no
indication of their actual biological activity. The advantage of
gene expression studies over genetic studies, including
sequencing, may be magnified by evolutionary considerations
of increased genetic heterogeneity in highly biologically active
and environmentally reactive genes, such as brain and
immune system genes, as a way of permitting adaptation to
the environment.23 Moreover, as per our earlier formulation
that ‘genes that change together (may) act together’,24 the
co-expression data sets we have generated in various
brain regions offer testable hypotheses for transcriptional
co-regulation, and for epistatic interactions among the
corresponding loci.56

Limitations and confounds. An acute treatment model like
the one we are using is not necessarily inductive to
assessing the long-term changes associated with anxiety,
such as functional and structural changes apparent on
imaging. Although we have no direct way of knowing if
some of the genes we captured with our screen are involved
or not in setting in motion such long-term changes, it is to be
noted that some of these gene changes have also been
reported in genetic studies of anxiety and anxiety-related
disorders. Moreover, we have candidate genes in our data
set with roles in brain infrastructure, including myelination
(Table 2). More chronic treatments should, nevertheless, be
pursued to verify and expand the findings presented in this
paper.

Different combinations of anxiogenic and anxiolytic agents
could be used in a comprehensive functional pharmaco-
genomic approach such as the one we have described. They
could conceivably lead to different results, which would be of
interest and welcome, since it is unlikely we are capturing with
our model the full spectrum of gene expression changes
involved in anxiety. However, if those drug combinations

indeed mimic and modulate the same core phenomenology,
the Venn diagrams of the overlap between different drug
treatments will be of high interest in terms of identifying the
key molecular players involved in the effects, as opposed to
those involved in the (very different) side-effects of the
individual drugs.

It is to be noted that our experimental approach for detecting
gene expression changes relies on a single methodology,
Affymetrix GeneChip oligonucleotide microarrays. It is possi-
ble that some of the gene expression changes detected from a
single biological experiment, with a one-time assay with this
technology, are biological or technical artifacts. With that in
mind, we have designed our experiments to minimize the
likelihood of having false positives, even at the expense of
having false negatives. Working with an isogenic mouse strain
affords us an ideal control baseline of saline vehicle injected
animals for our drug-injected animals. We performed three
independent de novo biological experiments, at different
times, with different batches of mice (Figure 1b). We have
pooled material from three mice in each experiment, and
carried out microarray studies. The pooling process intro-
duces a built in averaging of signal. We used a Venn diagram
approach and only considered the genes that were reprodu-
cibly changed in the same direction in at least two out of three
independent experiments. This overall design is geared to
factor out both biological and technical variability. It is to be
noted that the concordance between reproducible microarray
experiments using the latest generations of oligonucleotide
microarrays and other methodologies such as quantitative
PCR, with their own attendant technical limitations, is
estimated to be over 90%.57 Moreover, our CFG approach,
as described above, is predicated on the existence of multiple
internal and external cross-validators for each gene that is
reproducibly changed in expression (Figure 1). These cross-
validators are derived from independent gene expression or
genetic experiments.

Conclusions and future directions. The results presented
in this paper have a series of direct implications. First, in
terms of pharmacotherapy and drug development, some of
the candidate genes in our data set encode for proteins that
are modulated by existing pharmacological agents
(Supplementary Table S4), which may suggest future
avenues for rational polypharmacy using currently available
agents. Notably, existing drugs approved for other
indications, such as dopaminergic agents, ion channel
blockers, baclofen, nitrates, lipid modulators and disulfiram
(Antabuse) are potential augmentation options for existing
first-line anxiolytics and merit careful exploration as such.
Some of the top anxiety candidate genes (FOS, PTGDS,
HOMER1, NR4A2, GSK3B and LPL) are also modulated by
the omega-3 fatty acid DHA in recent animal model studies
carried by us (Le-Niculescu et al., Transl Psychiatry (2011) 1,
e4, doi:10.1038/tp.2011.1), providing a potential non-
pharmacological alternative for treatment. Our data sets of
the effects of yohimbine and diazepam on gene expression in
different key brain regions (Table 2) may be used as a source
of new targets for drug development. The candidate
biomarkers identified by us may, upon future validation, aid
with drug development, monitoring response to treatment
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and early clinical intervention. Heterogeneity is possible,
indeed likely, in individual human subjects—a fertile direction
for future studies.26,28,30 Targeting key pathways identified
by us (Figure 4) may provide broader options than targeting
individual genes, for both drug development and peripheral
blood readouts.

Second, despite using lines of evidence for our CFG
approach that have to do only with anxiety disorders, the list of
genes identified has a notable overlap with other psychiatric
disorders, and with medical disorders (Tables 5 and 7,
Supplementary Tables S2 and S3). This is a topic of major
interest and debate in the field.58,59 We demonstrate an
overlap between top candidate genes for anxiety and
candidate genes for schizophrenia and bipolar disorder, as
well as alcoholism previously identified by us through CFG
(Table 6 and Supplementary Figure S1), thus providing a
possible molecular basis for the frequently observed clinical
co-morbidity and interdependence between anxiety and those
other major psychiatric disorders. Notably, PDE10A and
TAC1 are at the overlap of all three major psychiatric domains,
and may be of major interest for drug development.60–62

Among our top candidate genes for anxiety are DBP and
RORB, circadian clock genes previously identified by us as
candidate genes for bipolar disorder 27,55,63 (Table 6 and
Supplementary Figure S1). In addition to mood symptoms, we
had previously demonstrated that DBP knock-out mice exhibit
increased reactivity to stress, as well as increased alcohol
consumption.27 NPAS4, another circadian gene in our anxiety
dataset, is changed in expression in all three brain regions
studied (Table 3). NPAS4 is a transcription factor that acts as
a heterodimer partner for ARNTL, another top candidate gene
for bipolar disorder identified by our previous work.25,26,64 The
involvement of circadian genes in anxiety may underlie
anxiety effects on sleep, diurnal variations in anxiety (for
example, higher at night), and cycling in levels of anxiety
symptoms in some patients—similar too, driven by or driving
mood symptoms (cycloanxiety vs cyclothymia).6 Another top

candidate gene at the overlap of bipolar disorder and anxiety
is PENK (preproenkephalin). Our work provides evidence for
the involvement of PENK in the PFC and HIP in anxiety
(Table 2). Endogenous opiates may signal that the environ-
ment is favorable, improving mood and decreasing anxiety.
As such, exogenous opiate drugs may be effective for
treatment, but highly addictive. Unexpectedly, there is a major
overlap between schizophrenia and anxiety, both at a top
candidate genes level (Supplementary Figure S1 and Table 6)
and at a pathway analyses level (Table 7 and Supplementary
Table S3). Clinically, while there are some reports of
co-morbidity between schizophrenia and anxiety,65–67 it is
an area that has possibly been under-appreciated and
understudied. Based on our work and the body of evidence
in the field, we propose that a new diagnostic category of
‘schizoanxiety disorder’ may have heuristic value and prag-
matic clinical utility, similar to schizoaffective disorder.

Third, the mechanistic understanding and model for anxiety
that emerges out of the candidate gene identified and the
analyses of biological pathways involved points to signal
transduction and reactivity to signals from the external
environment and internal milieu (Figure 5). Notably, pathways
involved in cellular stress and heat shock response (involving
HSPA1B, HSPA8, HSPA4, HSPA13) seem to have been
recruited by evolution for higher whole-body and mental
functions68 such as anxiety. The cybernetic-like simplicity of
the model should not overshadow the important fact that it is

Table 6 Gene Overlap Across Psychiatric Disorders: a CFG view

Anxiety Bipolar25,26,55 Schizophrenia29 Alcohol31

ADORA2A ADORA2A
BTG2 BTG2
CCKBR CCKBR
DBP DBP55

DRD1 DRD1
DRD2 DRD2
FOXP2 FOXP2
GABBR1 GABBR1
GNAS GNAS
GSK3B GSK3B26

LPL LPL
MEF2C MEF2C25

NR4A2 NR4A2
PDE10A PDE10A26 PDE10A
PENK PENK25

PTGDS PTGDS
RGS4 RGS4
RORB RORB26

TAC1 TAC1 TAC1

Abbreviation: CFG, convergent functional genomics.
Top anxiety CFG candidate genes are also top CFG candidate genes for other
major psychiatric disorders based on our previous studies.25,26,31,55

Table 7 Disease analyses for top candidate genes

GeneGo disease analyses
Disease P-value Ratio

PFC (n¼16 genes)
Depressive disorder, major 3.101e�14 10/133
Depressive disorder 1.034e�12 10/188
Mood disorders 3.462e�12 12/410
Parkinson disease 2.453e�11 11/361
Parkinsonian disorders 5.961e�11 11/392

AMY (n¼19 genes)
Mood disorders 5.074e�7 8/410
Friedreich ataxia 5.087e�7 3/9
Agoraphobia 7.258e�7 3/10
Fibrosis 1.546e�6 8/475
Genetic syndromes sometimes
associated with diabetes

3.362e�6 3/16

HIP (n¼45 genes)
Mental disorders 7.094e�15 41/2290
Psychiatry and psychology 1.303e�14 41/2329
Schizophrenia 5.021e�14 26/838
Schizophrenia and disorders
with psychotic features

5.618e�14 26/842

Cough 1.975e�12 7/17

Blood (n¼41 genes)
Schizophrenia and disorders
with psychotic features

4.592e�9 16/842

Wounds and injuries 4.708e�9 17/977
Urogenital neoplasms 1.930e�8 25/2531
Genital diseases, male 3.695e�8 24/2391
Schizophrenia 3.736e�8 15/838

Abbreviations: AMY, amygdala; CFG, convergent functional genomics; HIP,
hippocampus; PFC, prefrontal cortex.
Disease grouping analysis of top candidate genes (CFG score of 4.0 and up).
GeneGo analyses.
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the result of the empirical coalescence of data in a non-
hypothesis driven, discovery type approach. The implications
for understanding the pathophysiology and treatment of
anxiety and related disorders are profound. One needs to
correct cellular, brain and whole organism reactivity to the
environment in the treatment of these disorders. It is a place
where psychopharmacology, management of medical
problems, cognitive–behavioral therapy and social integration
can and should go hand in hand.

In conclusion, we propose that our comprehensive CFG
approach is a useful starting point in helping unravel the
complex genetic code and neurobiology of anxiety and related
disorders, and generates a series of leads for both future
research and clinical practice.
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Supplementary Information 
 
Figure S1. Overlap among top candidate genes for major psychiatric disorders  
after a decade (2000-2010) of CFG mapping of the genomic landscape in 
psychiatry. 
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Table S1. Brain-blood gene expression overlap. 
 

 
BRAIN REGIONS OVERLAP WITH 

BLOOD  Genes (BRAIN/BLOOD) 

PFC 7/102=6.9% 
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 Table S2 . Biological Pathway Analyses- All Genes. Ingenuity Pathway 
Analyses of all differentially expressed  genes changed by yohimbine and/or diazepam 
in the brain.  
A. Ingenuity Pathway analyses   

PFC (n=102 genes) 
Pathways p-value Ratio 
Huntington's Disease Signaling 2.96E-05 8/246 (0.033) 
Glioma Signaling 2.18E-04 5/116 (0.043) 
Protein Kinase A Signaling 2.48E-04 8/325 (0.025) 
RhoA Signaling 2.71E-04 5/110 (0.045) 
Role of NFAT in Cardiac Hypertrophy 5.06E-04 6/211 (0.028) 

AMY (n=125 genes) 
Pathways p-value Ratio 
IGF-1 Signaling 3.6E-04 5/102 (0.049) 
Clathrin-mediated Endocytosis Signaling 5.42E-04 6/169 (0.036) 
Huntington's Disease Signaling 3.31E-03 6/242 (0.025) 
Tight Junction Signaling 3.42E-03 5/167 (0.03) 
GABA Receptor Signaling 4.14E-03 3/55 (0.055) 

HIP (n=314 genes) 
Pathways p-value Ratio 
Breast Cancer Regulation by Stathmin1 1.32E-05 13/210 (0.062) 
Neuropathic Pain Signaling In Dorsal Horn Neurons 3.14E-05 9/108 (0.083) 
Role of NFAT in Cardiac Hypertrophy 3.98E-05 12/211 (0.057) 
Glutamate Receptor Signaling 5.98E-05 7/70 (0.1) 
Melatonin Signaling 1.63E-04 7/78 (0.09) 
 



Table S3. Disease Analyses –All Genes. Disease grouping analysis of all 
differentially expressed genes changed by yohimbine and/or diazepam in the brain.  
GeneGo analyses.  

 
 
 
  
 
  

GeneGo Disease analyses   

PFC (n=102 genes) 
Diseases p-value Ratio 
Respiration Disorders 1.63E-13 17/172 
Vomiting 1.94E-13 8/15 
Delirium, Dementia, Amnestic, Cognitive Disorders 2.8E-12 37/1184 
Basal Ganglia Diseases 3.66E-12 30/779 
Mood Disorders 8.75E-12 22/410 

AMY (n=125 genes) 
Diseases p-value Ratio 
Mental Disorders 3.535E-12 57/2290 
Psychiatry and Psychology  7.273E-12 57/2329 
Schizophrenia 4.059E-09 29/838 
Schizophrenia and Disorders with Psychotic Features 4.524E-09 29/842 
Pathologic Processes 4.253E-08 55/2729 

HIP (n=314 genes) 
Diseases p-value Ratio 
Mental Disorders 3.496E-21 124/2290 
Psychiatry and Psychology 1.568E-20 124/2329 
Schizophrenia and Disorders with Psychotic Features 1.462E-17 65/842 
Schizophrenia 4.725E-17 64/838 
Delirium, Dementia, Amnestic, Cognitive Disorders 1.906E-14 73/1184 



Table S4.  Genes in our datasets encoding targets of existing pharmacological  
agents.   Ingenuity Pathway Analysis was used to identify genes in our datasets that 
are targets of existing pharmacological agents.  

PFC 

Gene 
CFG 

Anxiety 
Score 

Location Type(s) Drug(s) 

DRD1 
dopamine receptor D1 5 Plasma Membrane G-protein coupled 

receptor 

iloperidone, asenapine, rotigotine, trifluoperazine, fluphenazine, pimozide, clozapine, 
haloperidol, fenoldopam, ropinirole, dihydroergocryptine, bromocriptine, apomorphine, 

dopamine 

DRD2 
dopamine receptor D2 4 Plasma Membrane G-protein coupled 

receptor 

paliperidone, risperidone, buspirone, bifeprunox, iloperidone, blonanserin, asenapine, 
pardoprunox, ocaperidone, abaperidone, fluphenazine decanoate, thiothixene, 

amitriptyline/perphenazine, haloperidol decanoate, molindone, trimethobenzamide, 
fluphenazine enanthate, loxapine, perphenazine, promazine, prochlorperazine, 

quetiapine, pramipexol, olanzapine, lisuride, cabergoline, ziprasidone, dopamine, 
droperidol, thiethylperazine, droperidol/fentanyl 

GSK3B 
glycogen synthase kinase 3 beta 4 Nucleus kinase enzastaurin 

ATP1A1 
ATPase, Na+/K+ transporting, alpha 1 

polypeptide 3 Plasma Membrane transporter digoxin, omeprazole, ethacrynic acid, perphenazine 

COL6A1 
collagen, type VI, alpha 1 3 Extracellular Space other collagenase clostridium histolyticum 

NTSR1 
neurotensin receptor 1 (high affinity) 2.5 Plasma Membrane G-protein coupled 

receptor contulakin-G 

GABRA3 
gamma-aminobutyric acid (GABA) A 

receptor, alpha 3 2 Plasma Membrane ion channel 

methohexital, amobarbital, estazolam, 
atropine/hyoscyamine/phenobarbital/scopolamine, clorazepate, , butabarbital, 
diazepam, temazepam, zolpidem, chlordiazepoxide, lorazepam, olanzapine, 

triazolam, clonazepam, flurazepam, midazolam, oxazepam, alprazolam, zaleplon, 
secobarbital phenobarbital, pentobarbital, thiopental, D 23129, desflurane, 

methoxyflurane, enflurane, pregnenolone 
SCN4B 

sodium channel, voltage-gated, type IV, 
beta 2 Plasma Membrane ion channel riluzole 

TUBA8 
tubulin, alpha 8 2 unknown other 

epothilone B, ixabepilone, colchicine/probenecid, XRP9881, eribulin, AL 108, EC145, 
NPI-2358, milataxel, TPI 287, TTI-237, docetaxel, vinflunine, vinorelbine, vincristine, 

vinblastine, paclitaxel, podophyllotoxin, colchicine 
RARB 

retinoic acid receptor, beta 1 Nucleus ligand-dependent 
nuclear receptor 

etretinate, adapalene, 13-cis-retinoic acid, tazarotene, acitretin, retinoic acid, 9-cis-
retinoic acid, fenretinide 

AMY 

Gene  Location Type(s) Drug(s) 

GABBR1 
gamma-aminobutyric acid (GABA) B 

receptor, 1 6 Plasma Membrane G-protein coupled 
receptor baclofen 

ADORA2A 
adenosine A2a receptor 5 Plasma Membrane G-protein coupled 

receptor adenosine, istradefylline, dyphylline, caffeine, aminophylline, clofarabine, theophylline 

KCNMA1 
potassium large conductance calcium-
activated channel, subfamily M, alpha 

member 1 
4 Plasma Membrane ion channel tedisamil 

CACNA2D1 
calcium channel, voltage-dependent, 

alpha 2/delta subunit 1 3.5 Plasma Membrane ion channel amlodipine/valsartan/hydrochlorothiazide, amlodipine/telmisartan, bepridil, 
amlodipine, pregabalin 

PTGFR 
prostaglandin F receptor (FP) 3 Plasma Membrane G-protein coupled 

receptor tafluprost, travoprost, isopropyl unoprostone, bimatoprost, latanoprost 

IGF1R 
insulin-like growth factor 1 receptor 2 Plasma Membrane transmembrane 

receptor OSI-906, cixutumumab, IGF1 

SCN4B 
sodium channel, voltage-gated, type IV, 

beta 2 Plasma Membrane ion channel riluzole 

HIP 

Gene  Location Type(s) Drug(s) 

GUCY1A3 
guanylate cyclase 1, soluble, alpha 3 5 Cytoplasm enzyme nitroglycerin, isosorbide-5-mononitrate, isosorbide dinitrate, nitroprusside, isosorbide 

dinitrate/hydralazine 

CCKBR 
cholecystokinin B receptor 4 Plasma Membrane G-protein coupled 

receptor 
 

CR 2945 

LPL 
lipoprotein lipase 4 Cytoplasm enzyme nicotinic acid, lovastatin/niacin 

NPY2R 
neuropeptide Y receptor Y2 3.5 Plasma Membrane G-protein coupled 

receptor Peptide YY 3-36 

PRKCA 
protein kinase C, alpha 3.5 Cytoplasm kinase L-threo-safingol 

SLC1A2 
solute carrier family 1 (glial high affinity 3.5 Plasma Membrane transporter riluzole 



glutamate transporter), member 2 

SSTR4 
somatostatin receptor 4 3.5 Plasma Membrane G-protein coupled 

receptor octreotide 

ALDH1A1 
aldehyde dehydrogenase 1 family, member 

A1 
3 Cytoplasm enzyme disulfiram, chlorpropamide 

GABRA5 
gamma-aminobutyric acid (GABA) A 

receptor, alpha 5 
3 Plasma Membrane ion channel 

methohexital, butabarbital, diazepam, temazepam, zolpidem, chlordiazepoxide, 
lorazepam, olanzapine, triazolam, clonazepam, flurazepam, midazolam, oxazepam, 

alprazolam, zaleplon, secobarbital, butalbital, phenobarbital, pentobarbital, thiopental, 
D 23129, desflurane, methoxyflurane, enflurane, pregnenolone 

GRM8 
glutamate receptor, metabotropic 8 3 Plasma Membrane G-protein coupled 

receptor fasoracetam 

FDFT1 
farnesyl-diphosphate farnesyltransferase 1 2 Cytoplasm enzyme TAK-475, zoledronic acid 

HMGCR 
3-hydroxy-3-methylglutaryl-CoA reductase 2 Cytoplasm enzyme 

aspirin/pravastatin, pitavastatin, lovastatin/niacin, ezetimibe/simvastatin, 
amlodipine/atorvastatin, fluvastatin, cerivastatin, atorvastatin, pravastatin, simvastatin, 

lovastatin, rosuvastatin 
TGFB2 

transforming growth factor, beta 2 2 Extracellular Space growth factor AP-12009 

TUBA8 
tubulin, alpha 8 2 unknown other 

epothilone B, ixabepilone, colchicine/probenecid, XRP9881, eribulin, AL 108, EC145, 
NPI-2358, milataxel, TPI 287, TTI-237, docetaxel, vinflunine, vinorelbine, vincristine, 

vinblastine, paclitaxel, podophyllotoxin, colchicine 
TUBB2B 

tubulin, beta 2B 2 Cytoplasm other cabazitaxel 
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